halomod.bias.Tinker10PBSplit¶
- class halomod.bias.Tinker10PBSplit(nu: ~numpy.ndarray, delta_c: float = 1.686, m: ~numpy.ndarray | None = None, mstar: float | None = None, delta_halo: float | None = 200, n: float | None = 1, sigma_8: float | None = 0.8, cosmo: ~astropy.cosmology.flrw.base.FLRW = FlatLambdaCDM(name='Planck15', H0=<Quantity 67.74 km / (Mpc s)>, Om0=0.3075, Tcmb0=<Quantity 2.7255 K>, Neff=3.046, m_nu=<Quantity [0., 0., 0.06] eV>, Ob0=0.0486), n_eff: None | ~numpy.ndarray = None, z: float = 0.0, **model_parameters)[source]¶
Bases:
Bias
Empirical bias of Tinker et al (2010).
See documentation for
Bias
for information on input parameters. This model has no free parameters.Notes
This is form from [1] obeys the peak-background split consistency formalism, which offers some advantages, but also fits well to simulations. It is dependent on the spherical halo definition. See the reference for details on the form.
- Parameters:
alpha (float, optional) – The fitted parameters. Each of these are available to specify at a certain overdensity. So for example
alpha_200
specifies thealpha
parameter at a spherical halo overdensity of 200. All default values are taken from Tinker 2010.beta (float, optional) – The fitted parameters. Each of these are available to specify at a certain overdensity. So for example
alpha_200
specifies thealpha
parameter at a spherical halo overdensity of 200. All default values are taken from Tinker 2010.gamma (float, optional) – The fitted parameters. Each of these are available to specify at a certain overdensity. So for example
alpha_200
specifies thealpha
parameter at a spherical halo overdensity of 200. All default values are taken from Tinker 2010.phi (float, optional) – The fitted parameters. Each of these are available to specify at a certain overdensity. So for example
alpha_200
specifies thealpha
parameter at a spherical halo overdensity of 200. All default values are taken from Tinker 2010.eta (float, optional) – The fitted parameters. Each of these are available to specify at a certain overdensity. So for example
alpha_200
specifies thealpha
parameter at a spherical halo overdensity of 200. All default values are taken from Tinker 2010.beta_exp (float, optional) – The value of
beta
,phi
etc., are functions of redshift via the relationbeta = beta0 (1 + z)^beta_exp
(and likewise for the other parameters).phi_exp (float, optional) – The value of
beta
,phi
etc., are functions of redshift via the relationbeta = beta0 (1 + z)^beta_exp
(and likewise for the other parameters).eta_exp (float, optional) – The value of
beta
,phi
etc., are functions of redshift via the relationbeta = beta0 (1 + z)^beta_exp
(and likewise for the other parameters).gamma_exp (float, optional) – The value of
beta
,phi
etc., are functions of redshift via the relationbeta = beta0 (1 + z)^beta_exp
(and likewise for the other parameters).max_z (float, optional) – The maximum redshift for which the redshift evolution holds. Above this redshift, the relation flattens. Default 3.
References
[1]Tinker, J. L. et al., “The Large-scale Bias of Dark Matter Halos: Numerical Calibration and Model Tests”, https://ui.adsabs.harvard.edu/abs/2010ApJ…724..878T, 2010
See also
Tinker10
Bias from the same study but without the constraint of the peak-background split formalism.
- bias()[source]¶
Calculate the first-order, linear, deterministic halo bias.
- Returns:
b – The bias as a function of mass, as an array of values corresponding to the instance attributes m and/or nu.
- Return type:
array-like
Examples
>>> import matplotlib.pyplot as plt >>> import numpy as np >>> from halomod.bias import Mo96 >>> peak_height = np.linspace(0.1, 2, 100) >>> bias = Mo96(nu=peak_height) >>> plt.plot(peak_height, bias.bias())
- delta_virs = array([ 200, 300, 400, 600, 800, 1200, 1600, 2400, 3200])¶
- classmethod get_models() Dict[str, Type] ¶
Get a dictionary of all implemented models for this component.
- pair_hmf = (<class 'hmf.mass_function.fitting_functions.Tinker10'>,)¶
The HMF model that pairs with this bias in the peak-background split