halomod.bias.Jing98¶
- class halomod.bias.Jing98(nu: ~numpy.ndarray, delta_c: float = 1.686, m: ~numpy.ndarray | None = None, mstar: float | None = None, delta_halo: float | None = 200, n: float | None = 1, sigma_8: float | None = 0.8, cosmo: ~astropy.cosmology.flrw.base.FLRW = FlatLambdaCDM(name='Planck15', H0=<Quantity 67.74 km / (Mpc s)>, Om0=0.3075, Tcmb0=<Quantity 2.7255 K>, Neff=3.046, m_nu=<Quantity [0., 0., 0.06] eV>, Ob0=0.0486), n_eff: None | ~numpy.ndarray = None, z: float = 0.0, **model_parameters)[source]¶
Bases:
Bias
Empirical bias of Jing (1998).
See documentation for
Bias
for information on input parameters. This model has no free parameters.Notes
This is an empirical form proposed in [1], with the formula
\[(a/\nu^4 + 1)^{b - c n} \left(1 + \frac{\nu^2 - 1}{\delta_c}\right)\]The parameters
a
,b
andc
are free parameters, with values fitted in [1] of(0.5, 0.06, 0.02)
, which are the defaults here.- Parameters:
a (float) – The fitting parameters.
b (float) – The fitting parameters.
c (float) – The fitting parameters.
References
[1] (1,2)Jing, Y. P., “Accurate Fitting Formula for the Two-Point Correlation Function of Dark Matter Halos”, http://adsabs.harvard.edu/abs/1998ApJ…503L…9J, 1998.
- bias()[source]¶
Calculate the first-order, linear, deterministic halo bias.
- Returns:
b – The bias as a function of mass, as an array of values corresponding to the instance attributes m and/or nu.
- Return type:
array-like
Examples
>>> import matplotlib.pyplot as plt >>> import numpy as np >>> from halomod.bias import Mo96 >>> peak_height = np.linspace(0.1, 2, 100) >>> bias = Mo96(nu=peak_height) >>> plt.plot(peak_height, bias.bias())
- classmethod get_models() Dict[str, Type] ¶
Get a dictionary of all implemented models for this component.
- pair_hmf = ()¶
The HMF model that pairs with this bias in the peak-background split