halomod.bias.Bias¶
- class halomod.bias.Bias(nu: ~numpy.ndarray, delta_c: float = 1.686, m: ~numpy.ndarray | None = None, mstar: float | None = None, delta_halo: float | None = 200, n: float | None = 1, sigma_8: float | None = 0.8, cosmo: ~astropy.cosmology.flrw.base.FLRW = FlatLambdaCDM(name='Planck15', H0=<Quantity 67.74 km / (Mpc s)>, Om0=0.3075, Tcmb0=<Quantity 2.7255 K>, Neff=3.046, m_nu=<Quantity [0., 0., 0.06] eV>, Ob0=0.0486), n_eff: None | ~numpy.ndarray = None, z: float = 0.0, **model_parameters)[source]¶
Bases:
Component
The base Bias component.
This class should not be instantiated directly! Use a subclass that implements a specific bias model. The parameters listed below are the input parameters for all bias models. Extra model-specific parameters can be given – these are documented in their respective class docstring.
- Parameters:
nu (array-like) – Peak-height,
delta^2_c/sigma^2
.delta_c (float, optional) – Critical over-density for collapse. Not all bias components require this parameter.
m (array, optional) – Vector of halo masses corresponding to nu. Not all bias components require this parameter.
mstar (float, optional) – Nonlinear mass, defined by the relation
sigma(mstar) = delta_c
, withsigma
the mass variance in spheres corresponding to virial radii of halos of massmstar
.delta_halo (float, optional) – The over-density of halos with respect to the mean background matter density.
n (float, optional) – The spectral index of the linear matter power spectrum..
Om0 (float, optional) – The matter density, as a fraction of critical density, in the current universe.
sigma_8 (float, optional) – The square root of the mass in spheres of radius 8 Mpc/h in the present day (normalizes the power spectrum).
h (float, optional) – Hubble parameter in units of 100 km/s/Mpc.
- bias() ndarray [source]¶
Calculate the first-order, linear, deterministic halo bias.
- Returns:
b – The bias as a function of mass, as an array of values corresponding to the instance attributes m and/or nu.
- Return type:
array-like
Examples
>>> import matplotlib.pyplot as plt >>> import numpy as np >>> from halomod.bias import Mo96 >>> peak_height = np.linspace(0.1, 2, 100) >>> bias = Mo96(nu=peak_height) >>> plt.plot(peak_height, bias.bias())
- classmethod get_models() Dict[str, Type] ¶
Get a dictionary of all implemented models for this component.
- pair_hmf = ()¶
The HMF model that pairs with this bias in the peak-background split