halomod.bias.Tinker10¶
- class halomod.bias.Tinker10(nu: ~numpy.ndarray, delta_c: float = 1.686, m: ~numpy.ndarray | None = None, mstar: float | None = None, delta_halo: float | None = 200, n: float | None = 1, sigma_8: float | None = 0.8, cosmo: ~astropy.cosmology.flrw.base.FLRW = FlatLambdaCDM(name='Planck15', H0=<Quantity 67.74 km / (Mpc s)>, Om0=0.3075, Tcmb0=<Quantity 2.7255 K>, Neff=3.046, m_nu=<Quantity [0., 0., 0.06] eV>, Ob0=0.0486), n_eff: None | ~numpy.ndarray = None, z: float = 0.0, **model_parameters)[source]¶
Bases:
Bias
Empirical bias of Tinker et al (2010).
See documentation for
Bias
for information on input parameters. This model has no free parameters.Notes
This is an empirical form that does not obey the peak-background split consistency formalism, but fits well to simulations. It is dependent on the spherical halo definition. The form from [1] is
\[1 - A\frac{\nu^a}{\nu^a + \delta_c^a} + B \nu^b + C \nu^c\]with
\[A = 1 + 0.24 y e^{-(4/y)^4},\]and
\[a = 0.44y - 0.88\]and
\[C = 0.019 + 0.107y + 0.19 e^{-(4/y)^4}\]and \(y=\log_{10} \Delta_{\rm halo}\).
The fitted parameters are
(B,b,c) = (0.183, 1.5, 2.4)
.- Parameters:
B (float, optional) – The fitted parameters.
b (float, optional) – The fitted parameters.
c (float, optional) – The fitted parameters.
References
[1]Tinker, J. L. et al., “The Large-scale Bias of Dark Matter Halos: Numerical Calibration and Model Tests”, https://ui.adsabs.harvard.edu/abs/2010ApJ…724..878T, 2010
See also
Tinker10PBsplit
Bias from the same study but with the constraint of the peak-background split formalism.
- bias()[source]¶
Calculate the first-order, linear, deterministic halo bias.
- Returns:
b – The bias as a function of mass, as an array of values corresponding to the instance attributes m and/or nu.
- Return type:
array-like
Examples
>>> import matplotlib.pyplot as plt >>> import numpy as np >>> from halomod.bias import Mo96 >>> peak_height = np.linspace(0.1, 2, 100) >>> bias = Mo96(nu=peak_height) >>> plt.plot(peak_height, bias.bias())
- classmethod get_models() Dict[str, Type] ¶
Get a dictionary of all implemented models for this component.
- pair_hmf = ()¶
The HMF model that pairs with this bias in the peak-background split