halomod.integrate_corr.AngularCF¶
- class halomod.integrate_corr.AngularCF(*args, **kwargs)[source]¶
Bases:
TracerHaloModel
Framework extension to angular correlation functions.
- Parameters:
p1 (callable, optional) – The redshift distribution of the sample. This needs not be normalised to 1, as this will occur internally. May be either a function of radial distance [Mpc/h] or redshift. If a function of radial distance,
p_of_z()
must be set to False. Default is a flat distribution in redshift.p2 (callable, optional) – See p1. This can optionally be a different function against which to cross-correlate. By default is equivalent to
p1()
.theta_min (float, optional) – min,max angular separations [Rad]
theta_max (float, optional) – min,max angular separations [Rad]
theta_num (int, optional) – Number of steps in angular separation
theta_log (bool, optional) – Whether to use logspace for theta values
zmin (float, optional) – The redshift limits of the sample distribution. Note that this is in redshit, regardless of the value of
p_of_z()
.zmax (float, optional) – The redshift limits of the sample distribution. Note that this is in redshit, regardless of the value of
p_of_z()
.znum (int, optional) – Number of steps in redshift grid.
logu_min (float, optional) – min,max of the log10 of radial separation grid [Mpc/h]. Must be large enough to let the integral over the 3D correlation function to converge.
logu_max (float, optional) – min,max of the log10 of radial separation grid [Mpc/h]. Must be large enough to let the integral over the 3D correlation function to converge.
unum (int, optional) – Number of steps in the u grid.
check_p_norm (bool, optional) – If False, cancels checking the normalisation of
p1()
andp2()
.p_of_z (bool, optional) – Whether
p1()
andp2()
are functions of redshift.kwargs (unpacked-dict) – Any keyword arguments passed down to
halomod.HaloModel
.
- ERROR_ON_BAD_MDEF = True¶
Switch to turn off exceptions for mdef’s not matching hmf_model
- property Mmax¶
Maximum mass at which to perform analysis [units \(\log_{10}M_\odot h^{-1}\)].
- Type:
float
- Type:
Parameter
- property Mmin¶
Minimum mass at which to perform analysis [units \(\log_{10}M_\odot h^{-1}\)].
- Type:
float
- Type:
Parameter
- property angular_corr_gal¶
The angular correlation function w(theta) for tracers.
Equation taken from Eq.(33) of [1].
References
[1]Blake, C. et al., “Halo-model signatures from 380000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts”, https://ui.adsabs.harvard.edu/abs/2008MNRAS.385.1257B.
- property angular_corr_matter¶
The angular correlation function w(theta) for matter.
Equation taken from Eq.(33) of [1].
References
[1]Blake, C. et al., “Halo-model signatures from 380000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts”, https://ui.adsabs.harvard.edu/abs/2008MNRAS.385.1257B.
- property bias¶
The halo bias as a function of halo mass.
- property bias_effective_matter: float¶
The effective bias of matter in DM halos.
This should be unity for models in which all dark matter is encapsulated in halos. However, sometimes the pair of HMF/bias models chosen are not pairs in the peak-background split sense, and will not (even in principle) yield an integral of unity. Also, even when in principle the value should be unity, the numerical integral is over a limited range of mass, and will generally not account for all the mass in the Universe.
To account for this, if
force_unity_dm_bias
is True, the returned bias will be unity if the bias/HMF models are a pair. If they are not a pair, we still somewhat account for the limited mass range by returning the integral normalized by the mean density in halos greater than our minimum mass.If
force_unity_dm_bias
is False, none of these fudges are performed.
- property bias_effective_tracer¶
The tracer occupation-weighted halo bias factor (Tinker 2005).
- property bias_model¶
Bias Model.
- Type:
Parameter
- property bias_params¶
Dictionary of parameters for the Bias model.
- Type:
Parameter
- property central_fraction¶
The total fraction of tracers that are centrals.
Note: This may not exist for every kind of tracer.
- property central_occupation¶
The mean central occupation of the tracer as a function of halo mass.
- property check_p_norm¶
If False, cancels checking the normalisation of
p1()
andp2()
.- Type:
Parameter
- clone(**kwargs)¶
Create and return an updated clone of the current object.
- property cmz_relation¶
Concentration-mass-redshift relation.
- property colossus_cosmo¶
An instance of a COLOSSUS cosmology, which can be used to perform various COLOSSUS operations.
- property colossus_params¶
Options for colossus cosmology not set/derived in the astropy cosmology.
- Type:
Parameter
- property corr_1h_auto_matter¶
The halo model 1-halo dark matter auto-correlation function.
- property corr_1h_auto_matter_fnc¶
A callable returning the halo model 1-halo DM auto-correlation function.
- property corr_1h_auto_tracer¶
The 1-halo term of the tracer auto correlations.
- property corr_1h_auto_tracer_fnc¶
A callable returning the 1-halo term of the tracer auto correlations.
- property corr_1h_cross_tracer_matter¶
The 1-halo term of the cross correlation between tracer and matter.
- property corr_1h_cross_tracer_matter_fnc¶
A callable returning the 1-halo cross-corr between tracer and matter.
- property corr_1h_cs_auto_tracer¶
The cen-sat part of the 1-halo term of the tracer auto-correlation function.
Note: May not exist for every kind of tracer.
- property corr_1h_cs_auto_tracer_fnc¶
A callable returning the cen-sat part of the 1-halo term of the tracer auto-correlation function.
Note: May not exist for every kind of tracer.
- property corr_1h_ss_auto_tracer¶
The satellite-satellite part of the 1-halo term of the tracer auto-correlation function.
Note: May not exist for every kind of tracer.
- property corr_1h_ss_auto_tracer_fnc¶
A callable returning the satellite-satellite part of the 1-halo term of the tracer auto-correlation function.
Note: May not exist for every kind of tracer.
- property corr_2h_auto_matter: Callable[[float | ndarray], float | ndarray]¶
The 2-halo term of the matter auto-correlation.
- property corr_2h_auto_matter_fnc: Callable[[float | ndarray], float | ndarray]¶
A callable returning the 2-halo term of the matter auto-correlation at arbitrary k.
- property corr_2h_auto_tracer¶
The 2-halo term of the tracer auto-correlation.
- property corr_2h_auto_tracer_fnc¶
A callable returning the 2-halo term of the tracer auto-correlation.
- property corr_2h_cross_tracer_matter¶
The 2-halo term of the cross-correlation between tracer and matter.
- property corr_2h_cross_tracer_matter_fnc¶
A callable returning the 2-halo cross-corr between tracer and matter.
- property corr_auto_matter¶
The halo-model-derived nonlinear dark matter auto-correlation function.
- property corr_auto_matter_fnc¶
A callable returning the halo-model DM auto-correlation function.
- property corr_auto_tracer¶
The tracer auto correlation function.
- property corr_auto_tracer_fnc¶
A callable returning the tracer auto correlation function.
- property corr_cross_tracer_matter¶
Cross-correlation of tracer with matter.
- property corr_cross_tracer_matter_fnc¶
A callable returning the cross-correlation of tracer with matter.
- property corr_halofit_mm¶
The nonlinear (from halofit) auto-correlation function of dark matter.
- property corr_halofit_mm_fnc¶
A callable returning the nonlinear auto-correlation function of dark matter.
- property corr_linear_mm¶
The linear auto-correlation function of dark matter.
- property corr_linear_mm_fnc¶
A callable returning the linear auto-correlation function of dark matter.
- property cosmo¶
Cosmographic object (
astropy.cosmology.FLRW
object), with custom cosmology fromcosmo_params
applied.
- property cosmo_model¶
The basis for the cosmology – see astropy documentation. Can be a custom subclass. Defaults to Planck18.
- Type:
instance of astropy.cosmology.FLRW subclass
- Type:
Parameter
- property cosmo_params¶
Parameters for the cosmology that deviate from the base cosmology passed. This is useful for repeated updates of a single parameter (leaving others the same). Default is the empty dict. The parameters passed must match the allowed parameters of cosmo_model. For the basic class this is
- Tcmb0:
Temperature of the CMB at z=0
- Neff:
Number of massless neutrino species
- M_nu:
Mass of neutrino species (list)
- H0:
The hubble constant at z=0
- Om0:
The normalised matter density at z=0
- Type:
dict
- Type:
Parameter
- property delta_c¶
The critical overdensity for collapse, \(\delta_c\).
- Type:
float
- Type:
Parameter
- property delta_k¶
Dimensionless power spectrum, \(\Delta_k = \frac{k^3 P(k)}{2\pi^2}\).
- property disable_mass_conversion¶
Disable converting mass function from builtin definition to that provided.
- Type:
bool
- Type:
Parameter
- property dlnk¶
Step-size of log wave-numbers
- Type:
float
- Type:
Parameter
- property dlog10m¶
log10 interval between mass bins
- Type:
float
- Type:
Parameter
- property dndlnm¶
The differential mass function in terms of natural log of m,
len=len(m)
[units \(h^3 Mpc^{-3}\)]
- property dndlog10m¶
The differential mass function in terms of log of m,
len=len(m)
[units \(h^3 Mpc^{-3}\)]
- property dndm¶
The number density of haloes,
len=len(m)
[units \(h^4 M_\odot^{-1} Mpc^{-3}\)]
- property dr_table¶
The width of r bin.
- Type:
Parameter
- property exclusion_model¶
A string identifier for the type of halo exclusion used (or None).
- Type:
Parameter
- property exclusion_params¶
Dictionary of parameters for the Exclusion model.
- Type:
Parameter
- property filter¶
Instantiated model for filter/window functions.
Note that this filter is not normalised – i.e. the output of filter.sigma(8) will not be the input sigma_8.
- property filter_model¶
A model for the window/filter function.
- Type:
hmf.filters.Filter
subclass- Type:
Parameter
- property filter_params¶
Model parameters for filter_model.
- Type:
dict
- Type:
Parameter
- property force_1halo_turnover¶
Suppress 1-halo power on scales larger than a few virial radii.
- Type:
Parameter
- property fsigma¶
The multiplicity function, \(f(\sigma)\), for hmf_model.
len=len(m)
- classmethod get_all_parameter_defaults(recursive=True)¶
Dictionary of all parameters and defaults.
- classmethod get_all_parameter_names()¶
Yield all parameter names in the class.
- get_dependencies(*q)¶
Determine all parameter dependencies of the quantities in q.
- Parameters:
q (str) – String(s) labelling a quantity
- Returns:
deps – A set containing all parameters on which quantities in q are dependent.
- Return type:
set
- property growth¶
The instantiated growth model.
- property growth_factor¶
The growth factor.
- property growth_model¶
The model to use to calculate the growth function/growth rate.
- Type:
hmf.growth_factor._GrowthFactor subclass
- Type:
Parameter
- property growth_params¶
Relevant parameters of the
growth_model
.- Type:
dict
- Type:
Parameter
- property halo_bias¶
Halo bias.
- property halo_concentration¶
The concentration-mass relation.
- property halo_concentration_model¶
A halo_concentration-mass relation.
- Type:
Parameter
- property halo_concentration_params¶
Dictionary of parameters for the concentration model.
- Type:
Parameter
- property halo_overdensity_crit¶
The halo overdensity with respect to the critical density.
- property halo_overdensity_mean¶
The halo overdensity with respect to the mean background.
- property halo_profile¶
A class containing the elements necessary to calculate halo halo_profile quantities.
- property halo_profile_lam¶
Mass-normalised halo profile self-convolution, with shape (len(r), len(m)).
- property halo_profile_model¶
The halo density halo_profile model.
- Type:
Parameter
- property halo_profile_params¶
Dictionary of parameters for the Profile model.
- Type:
Parameter
- property halo_profile_rho¶
Mass-normalised halo density profile, with shape (len(r), len(m)).
- property halo_profile_ukm¶
Mass-normalised fourier halo profile, with shape (len(k), len(m)).
- property hc_spectrum¶
The spectrum with which the halo-centre power spectrum is identified.
Choices are ‘linear’, ‘nonlinear’, ‘filtered-lin’ or ‘filtered-nl’. ‘filtered’ spectra are filtered with a real-space top-hat window function at a scale of 2 Mpc/h, which ensures that haloes do not overlap on scales small than this.
- Type:
Parameter
- property hm_dlog10k¶
The width of k bin in log10.
- Type:
Parameter
- property hm_logk_max¶
The maximum k bin in log10.
- Type:
Parameter
- property hm_logk_min¶
The minimum k bin in log10.
- Type:
Parameter
- property hmf¶
Instantiated model for the hmf fitting function.
- property hmf_model¶
A model to use as the fitting function \(f(\sigma)\)
- Type:
str or hmf.fitting_functions.FittingFunction subclass
- Type:
Parameter
- property hmf_params¶
Model parameters for hmf_model.
- Type:
dict
- Type:
Parameter
- property hod¶
A class representing the HOD.
- property hod_model¶
HOD
class.- Type:
Parameter
- property hod_params¶
Dictionary of parameters for the HOD model.
- Type:
Parameter
- property how_big¶
Size of simulation volume in which to expect one halo of mass m (with 95% probability), ` len=len(m)` [units \(Mpch^{-1}\)]
- property k¶
Wavenumbers, [h/Mpc]
- property k_hm¶
The wave-numbers at which halo-model power spectra are calculated.
Typically smaller in range than k for linear theory.
- property linear_power_fnc¶
A callable returning the linear power as a function of k (in h/Mpc).
- property lnsigma¶
Natural log of inverse mass variance,
len=len(m)
.
- property logu_max¶
Maximum radial separation grid [Mpc/h].
- Type:
Parameter
- property logu_min¶
Minimum radial separation grid [Mpc/h].
- Type:
Parameter
- property m¶
Halo masses (defined via
mdef
).
- property mass_effective¶
Average host-halo mass (in log10 units).
- property mass_nonlinear¶
The nonlinear mass, nu(Mstar) = 1.
- property mdef: MassDefinition¶
The halo mass-definition model instance.
Default mass definition is the one the chosen hmf model was measured with.
- property mdef_model¶
A model to use as the mass definition.
- Type:
str or
hmf.halos.mass_definitions.MassDefinition
subclass- Type:
Parameter
- property mdef_params¶
Model parameters for mdef_model. :type: dict
- Type:
Parameter
- property mean_density¶
Mean density of universe at redshift z.
- property mean_density0¶
Mean density of universe at z=0, [Msun h^2 / Mpc**3]
- property mean_density_in_halos¶
- property mean_tracer_den¶
The mean density of the tracer.
This is always the integrated density. If tracer_density is supplied to the constructor, that value can be found as
tracer_density()
. It should be very close to this value.
- property mean_tracer_den_unit¶
The mean density of the tracer, in the units defined in the HOD.
- property n¶
Spectral index of fluctuations
Must be greater than -3 and less than 4.
- Type:
float
- Type:
Parameter
- property n_eff¶
Effective spectral index at scale of halo radius,
len=len(m)
Notes
This function, and any derived quantities, can show small non-physical ‘wiggles’ at the 0.1% level, if too coarse a grid in ln(k) is used. If applications are sensitive at this level, please use a very fine k-space grid.
Uses eq. 42 in Lukic et. al 2007.
- property ngtm¶
The cumulative mass function above m,
len=len(m)
[units \(h^3 Mpc^{-3}\)]In the case that m does not extend to sufficiently high masses, this routine will auto-generate
dndm
for an extended mass range.In the case of the ff.Behroozi fit, it is impossible to auto-extend the mass range except by the power-law fit, thus one should be careful to supply appropriate mass ranges in this case.
- property nonlinear_delta_k¶
Dimensionless nonlinear power spectrum.
\[\Delta_k = \frac{k^3 P_{\rm nl}(k)}{2\pi^2}\]
- property nonlinear_power¶
Non-linear log power [units \(Mpc^3/h^3\)].
Non-linear corrections come from HALOFIT.
- property nonlinear_power_fnc¶
A callable returning the nonlinear (halofit) power as a function of k (in h/Mpc).
- property normalised_filter¶
A normalised filter, such that filter.sigma(8) == sigma8
- property nu¶
The parameter \(\nu = \left(\frac{\delta_c}{\sigma}\right)^2\),
len=len(m)
- property p1¶
The redshift distribution of the sample.
- Type:
Parameter
- property p2¶
The redshift distribution of the second sample for correlation.
- Type:
Parameter
- classmethod parameter_info(names=None)¶
Prints information about each parameter in the class.
Optionally, restrict printed parameters to those found in the list of names provided.
- property parameter_values¶
Dictionary of all parameters and their current values
- property power¶
Normalised log power spectrum [units \(Mpc^3/h^3\)].
- property power_1h_auto_matter¶
The halo model-derived nonlinear 1-halo dark matter auto-power spectrum.
- property power_1h_auto_matter_fnc¶
A callable returning the halo model 1-halo DM auto-power spectrum.
- property power_1h_auto_tracer¶
The total 1-halo term of the tracer auto power spectrum.
- property power_1h_auto_tracer_fnc¶
A callable returning the total 1-halo term of the tracer auto power spectrum.
- property power_1h_cross_tracer_matter¶
The total 1-halo cross-power spectrum between tracer and matter.
- property power_1h_cross_tracer_matter_fnc¶
A callable returning the total 1-halo cross-power spectrum between tracer and matter.
- property power_1h_cs_auto_tracer¶
The cen-sat part of the 1-halo term of the tracer auto-power spectrum.
Note: May not exist for every kind of tracer.
- property power_1h_cs_auto_tracer_fnc¶
A callable returning the cen-sat part of the 1-halo term of the tracer auto-power spectrum.
Note: May not exist for every kind of tracer.
- property power_1h_ss_auto_tracer¶
The satellite-satellite part of the 1-halo term of the tracer auto-power spectrum.
Note: May not exist for every kind of tracer.
- property power_1h_ss_auto_tracer_fnc¶
A callable returning the satellite-satellite part of the 1-halo term of the tracer auto-power spectrum.
Note: May not exist for every kind of tracer.
- property power_2h_auto_matter_fnc: ndarray¶
Return the halo model 2-halo matter auto-power spectrum at k.
- property power_2h_auto_tracer¶
The 2-halo term of the tracer auto-power spectrum.
- property power_2h_auto_tracer_fnc¶
Return the 2-halo term of the tracer auto-power spectrum at k.
- property power_2h_cross_tracer_matter¶
The 2-halo term of the cross-power spectrum between tracer and matter.
- property power_2h_cross_tracer_matter_fnc¶
A callable returning the 2-halo cross-power between tracer and matter.
- property power_auto_matter¶
The halo-model-derived nonlinear dark power auto-power spectrum.
- property power_auto_matter_fnc¶
A callable returning the halo-model DM auto-power spectrum.
- property power_auto_tracer¶
Auto-power spectrum of the tracer.
- property power_auto_tracer_fnc¶
- property power_cross_tracer_matter¶
Cross-power spectrum between tracer and matter.
- property power_cross_tracer_matter_fnc¶
A callable returning cross-power spectrum of tracer and matter.
- power_hh(k, mmin=None, mmax=None, mmin2=None, mmax2=None)¶
The halo-centre power spectrum of haloes in a given mass range.
The power of a given pair of halo masses is assumed to be linearly biased, \(P_hh(k) = b(m_1)b(m_2)P_{lin}(k)\)
- Parameters:
k (np.ndarray) – Array of wavenumbers. Units h/Mpc.
mmin (real, default
Mmin
) – The minimum halo mass of the range (for the first of the halo pairs). Note: masses here are log10 masses.mmax (real, default None) – The maximum halo mass of the range (for the first of the halo pairs). If a single halo mass is desired, set mmax==mmin.
mmin2 (real, default None) – The minimum halo mass of the range (for the second of the halo pairs). By default, takes the same value as mmin.
mmax – The maximum halo mass of the range (for the second of the halo pairs). By default, takes the same value as mmax.
- classmethod quantities_available()¶
Obtain a list of all available output quantities.
- property r¶
Physical separation grid [Mpc/h].
- property radii¶
The radii corresponding to the masses m.
Note that these are not the halo radii – they are the radii containing mass m given a purely background density.
- property rho_gtm¶
Mass density in haloes >m,
len=len(m)
[units \(M_\odot h^2 Mpc^{-3}\)]In the case that m does not extend to sufficiently high masses, this routine will auto-generate
dndm
for an extended mass range.In the case of the ff.Behroozi fit, it is impossible to auto-extend the mass range except by the power-law fit, thus one should be careful to supply appropriate mass ranges in this case.
- property rho_ltm¶
Mass density in haloes <m,
len=len(m)
[units \(M_\odot h^2 Mpc^{-3}\)]Note
As of v1.6.2, this assumes that the entire mass density of halos is encoded by the
mean_density0
parameter (ie. all mass is found in halos). This is not explicitly true of all fitting functions (eg. Warren), in which case the definition of this property is somewhat inconsistent, but will still work.In the case that m does not extend to sufficiently high masses, this routine will auto-generate
dndm
for an extended mass range.In the case of the ff.Behroozi fit, it is impossible to auto-extend the mass range except by the power-law fit, thus one should be careful to supply appropriate mass ranges in this case.
- property rlog¶
If True, r bins are logarithmically distributed.
- Type:
Parameter
- property rmax¶
Maximum length scale.
- Type:
Parameter
- property rmin¶
Minimum length scale.
- Type:
Parameter
- property rnum¶
Number of r bins.
- Type:
Parameter
- property satellite_fraction¶
The total fraction of tracers that are satellites.
Note: this may not exist for every kind of tracer.
- property satellite_occupation¶
The mean satellite occupation of the tracer as a function of halo mass.
- property sd_bias¶
A class containing relevant methods to calculate scale-dependent bias corrections.
- property sd_bias_correction¶
Return the correction for scale dependancy of bias.
- property sd_bias_model¶
Model of Scale Dependant Bias.
- Type:
Parameter
- property sd_bias_params¶
Dictionary of parameters for Scale Dependant Bias.
- Type:
Parameter
- property sigma¶
The sqrt of the mass variance at z,
len=len(m)
.
- property sigma_8¶
RMS linear density fluctuations in spheres of radius 8 Mpc/h
- Type:
float
- Type:
Parameter
- property takahashi¶
Whether to use updated HALOFIT coefficients from Takahashi+12.
If False, use the original coefficients from Smith+2003.
- Type:
bool
- Type:
Parameter
- property theta¶
Angular separations, [Rad].
- property theta_log¶
If angular separations are logarithmically distributed.
- Type:
Parameter
- property theta_max¶
Maximum angular separations [Rad].
- Type:
Parameter
- property theta_min¶
Minimum angular separations [Rad].
- Type:
Parameter
- property theta_num¶
Number of angular separations [Rad].
- Type:
Parameter
- property total_occupation¶
The mean total occupation of the tracer as a function of halo mass.
- property tracer_concentration¶
Concentration-mass relation model instance.
- property tracer_concentration_model¶
The tracer concentration-mass relation.
- Type:
Parameter
- property tracer_concentration_params¶
Dictionary of parameters for tracer concentration-mass relation.
- Type:
Parameter
- property tracer_density¶
Mean density of the tracer, ONLY if passed directly.
- Type:
Parameter
- property tracer_density_m¶
The total tracer density in halos of mass m.
- property tracer_mmin¶
The minimum halo mass of integrals over the tracer population.
This is a little tricky, because HOD’s which don’t enforce the central condition, even if they have a sharp cut at mmin, should not stop the integral at the central’s Mmin, but should rather continue to pick up the satellites in lower mass haloes.
- property tracer_profile¶
Object to calculate quantities of the tracer profile.
- property tracer_profile_lam¶
The mass-normalised profile self-convolution of the tracer, shape (len(r), len(m)).
- property tracer_profile_model¶
The tracer density halo_profile model.
- Type:
Parameter
- property tracer_profile_params¶
Dictionary of parameters for the tracer Profile model.
- Type:
Parameter
- property tracer_profile_rho¶
The mass-normalised density profile of the tracer, with shape (len(r), len(m)).
- property tracer_profile_ukm¶
The mass-normalised fourier density profile of the tracer, shape (len(k), len(m)).
- property transfer¶
The instantiated transfer model
- property transfer_function¶
Normalised CDM log transfer function.
- property transfer_model¶
Defines which transfer function model to use.
Built-in available models are found in the
hmf.transfer_models
module. Default is CAMB if installed, otherwise EH.- Type:
str or
hmf.transfer_models.TransferComponent
subclass, optional- Type:
Parameter
- property transfer_params¶
Relevant parameters of the transfer_model.
- Type:
dict
- Type:
Parameter
- property unum¶
Number of radial separation grids [Mpc/h].
- Type:
Parameter
- update(**kwargs)¶
Updates any parameter passed.
- property uvec¶
Radial separation grid [Mpc/h].
- validate()¶
Perform validation of the input parameters as they relate to each other.
- property xvec¶
Radial distance grid (corresponds to zvec) [Mpc/h].
- property z¶
Redshift.
Must be greater than 0.
- Type:
float
- Type:
Parameter
- property zmax¶
Maximum redshift.
- Type:
Parameter
- property zmin¶
Minimum redshift.
- Type:
Parameter
- property znum¶
Number of redshift bins.
- Type:
Parameter
- property zvec¶
Redshift distribution grid.